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For a class of nonlinear harmonic gear drive systems with mismatched uncertainties, a novel robust control method is presented on
the basis of quadratic integral sliding mode surface, and the closed-loop system has satisfying performance and strong robustness
against mismatched uncertainties and nonlinear disturbances. Considering time-varying nonlinear torques and parameters
variations which are caused by nonlinear frictions and backlash, a nonlinear harmonic gear drive system mathematic model is
established and the effect of nonlinear parts is compensated during control system design. It is proven that the quadratic integral
sliding mode surface can be reached in finite time and the closed-loop system is asymptotic stable robustly. The simulation
studies are carried out in comparison with traditional linear sliding mode control and integral sliding mode control, verifying
the effectiveness of the proposed method.

1. Introduction

Harmonic gear is a new type of drive which is realized by
elastic deformation movement. Instead of using rigid compo-
nent, it uses a flexible component to realize the drive. There-
fore, it has many special properties which cannot be obtained
in other drives.The harmonic gear is composed of three main
components, including a circular spline, a flexspline, and a
wave generator. Through the action of the wave generator,
a movable deformation wave is generated in the flexspline
and the flexspline engages with the circular spline to achieve
the transmission. The harmonic gear has advantages of large
range of transmission ratio, multiteeth gearing, large carrying
capacity, high precision, and running smoothly without
impact. Because of its own characteristics, harmonic gear is
widely applied in aviation control systems, instrumentation,
robotics, and other fields [1–4], where drive systems are re-
quired to be capable of small volume, light weight, high trans-
mission precision, and small hysteresis.

Despite those advantages, many issues will occur during
runtime, such as assembly errors, gear wears, and deterio-
ration of working environment. Due to kinetic errors and
nonlinear elastic deformations, these issues will causemotion
delay, transmission errors, and inaccurate tracking, which

leads to the fact that it is very important to focus on angular
transmission errors in harmonic gear drive systems.

In order to reduce the errors, many researchers have done
wide investigations on force analysis and movement analysis.
The stress of flexspline in harmonic gear drive is analyzed
in [5]. At same time, a harmonic gear drive system dynamic
system is established by dynamic equation analysis and least
square method in [6]. In [7], the research of theoretical
modeling of nonlinear torsional behavior in harmonic gear
is carried out. These researches abovementioned focus on
harmonic gear drive systems’ dynamic model, analysis of
errors in harmonic gear drive systems, or nonlinear frictions
model, which illustrates the fact that angular transmission
errors of harmonic gear drive system have been widely
analyzed and have been mathematically modeled in various
conventional studies and make it practical to compensate the
error by control methods.

However, there are fewer researches on this part and one
primary reason for this is harmonic gear drive system, a
class of nonlinear systems, which are affected by mismatched
uncertainties such as nonlinear torques and working con-
dition deterioration. It is hard to control such nonlinear
systems withmismatched uncertainties and nonlinear distur-
bances. Consequently, researches in this area are developed
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slowly. Previous research [8] designs a PID controller for
a class of harmonic drive system with frictions to reduce
transmission errors, and as a result, harmonic gear drive
system’s performance is enhanced by error compensation.
The results show that using control method to reduce error is
feasible but [8] failed to consider mismatched uncertainties
and nonlinear disturbances, which are inevitable in practice,
while [9] designing a sliding mode controller based on linear
sliding mode surface, which has a better performance than
PID controller, and taking disturbances into consideration.
Though it has its improvements, there are also some limita-
tions in [9] such as ignoring some critical torques inmodeling
and designing, using linear sliding mode surface and no
attention to uncertainties.

Sliding mode control (SMC) is a new variable structure
robust control method. By choosing the sliding surface and
the reaching law, it can make the system response quickly
with strong robustness and have insensibility to external in-
terferences and parameters variations. As an importantmeth-
od of nonlinear control, it has been widely researched in re-
cent years.

In [10], Xie Jian et al. design a sliding mode controller
for hydraulic pump-control-motor system anduse simulation
results to illustrate that the sliding mode controller has
strong anti-interference ability and good tracking perfor-
mance when compared with PID controller, improving the
control accuracy and stability of the system. In [11], by using
boundary layer method to restrain the chatting, NE Sadr
et al. design a sliding mode controller for missile autopilot
and the system has strong robustness to uncertainties and
disturbances. Besides, Murat Furat et al. design a second-
order integral sliding mode controller for a SISO system in
[12], making the system overcome the parameter fluctuation
and uncertainties caused by the external load. Furthermore,
Azar A T et al. design an adaptive sliding mode controller
for the Furuta Pendulum in [13]. In comparison with other
controllers, the simulation result shows that the sliding
mode control has advantages of fast response and small
errors. In addition, Ginoya D et al. design a sliding mode
controller using extended disturbance observer for a system
with uncertainties in [14] and the closed-loop system has
robustness to the uncertainties. Hess RA et al. design a slide
mode controller for a nonlinear unmanned aerial vehicle in
[15], and the controller has a good performance on nonlinear
system.

Investigations in [10–15] illustrate that the sliding mode
control method finds widel applications on nonlinear system
control and has a good performance. Besides, the closed-
loop system has insensitivity to disturbance and uncertain-
ties, which means that the system has strong robustness
against uncertainties including parameters variations and
disturbances. However, the insensitivity to uncertainties is
realized only in sliding phase. If system is not on the
sliding mode surface, the system will be vulnerable to
uncertainties. Additionally, the robustness is only limited
to matched uncertainties. The so-called integral sliding
mode control (ISMC) is proposed to improve such situation
but, unfortunately, the performance of ISMC is conserva-
tive.

A class of nonlinear harmonic gear drive systems
with mismatched uncertainties is studied and the pri-
mary contributions of this paper are as follows. (1) A
novel quadratic integral sliding mode controller design
method is presented on the basis of quadratic integral
sliding mode surface. (2)Considering frictions, time-varying
nonlinear torques, and parameters variations which are
caused by backlash, the influence of nonlinear parts on
control system has been studied. The mathematical mod-
els of nonlinear torques and frictions are presented and
the effect of nonlinear parts is compensated during con-
trol system design. (3) In system modeling, take fric-
tions and nonlinear elastic deformation into consideration
and the mathematical model of harmonic gear drive sys-
tem is established. (4) By using Lyapunov stability the-
ory, it is proven that the quadratic integral sliding mode
surface can be reached in finite time and the closed-loop
system is robustly asymptotic stable. (5) In comparison with
the traditional linear sliding mode control (which can be
abbreviated as SMC) and the integral sliding mode control
(which can be abbreviated as ISMC), the simulation re-
sults demonstrated that quadratic integral sliding mode con-
trol (which can be abbreviated as QISMC) stabilizes the sys-
tem rapidly with fast response, short rise time, small over-
shoot, small error, and strong robustness against the mis-
matched uncertainties and nonlinear disturbances.

The remainder of this paper is organized as follows. Sec-
tion 2 gives details on harmonic gear drive systems modeling
and illustrations for backlash and frictions. In Section 3, the
quadratic integral sliding surface is presented; furthermore,
its corresponding quadratic integral sliding mode controller
is designed in Section 4. Section 5 proves that quadratic
integral sliding mode surface can be reached in finite time
and the closed-loop system is robustly asymptotic stable. The
effectiveness of the quadratic integral sliding mode control is
verified in comparison with SMC and ISMC in Section 6, and
Section 7 draws the conclusions of this paper.

2. Harmonic Gear Drive System

Harmonic gear drive system (Figure 1) is mainly divided into
the DCmotor system and the harmonic gear system.TheDC
motor is driven by controller and outputs torques to the wave
generator in harmonic gear system; as a result, torques are
transmitted by engagement to a flexspline. A mathematical
description of harmonic gear drive system will be given in
this part.

2.1. DC Motor System. Using Kirchhoff ’s law of electricity,
DC motor system can be presented by the following:

𝑢 (𝑡) = 𝑖𝑎𝑅 + 𝐿𝑑𝑖𝑎𝑑𝑡 + 𝐾𝑏𝜔𝑚 (1)

where 𝑖𝑎 is the motor armature current, 𝑢(𝑡) is the motor
armature voltage, 𝑅 is the equivalent resistance, 𝐾𝑏 is the
back-EMF coefficient, and 𝜔𝑚 is the angel speed of motor
rotor. 𝐿 is the motor armature inductance, which is generally
ignored due to its tiny value.
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Figure 1: Structure of Harmonic gear drive system.

Figure 2: Harmonic gear system.

2.2. HarmonicGear System. AsFigure 2 [16] shows, harmonic
gear system can be simplified as a typical two-mass system
including a circular spline, a flexspline, and a wave generator.

Harmonic gear transmission system satisfies following
dynamic equations:

𝐽𝑚 ̈𝑞𝑚 = 𝑇𝑚 − 𝑇𝑠 − 𝐹𝑚
𝐽𝑙 ̈𝑞𝑙 = 𝑇𝑠 − 𝐹𝑙 (2)

where 𝑞𝑚 is the angular displacement of thewave generator, 𝑞𝑙
is the angular displacement of the flexspline, 𝑇𝑚 is the torques
on the wave generator, and 𝑇𝑠 is the torques on the flexspline.𝐹𝑚 is the equivalent frictions on the wave generator and 𝐹𝑙 is
the equivalent frictions on the flexspline. 𝐽𝑚 is the moment of
inertia of the wave generator and 𝐽𝑙 is the moment of inertia
of the flexspline.

The kinetic model of harmonic gear drive system satisfies
the following:

𝑇𝑠 = 𝐾𝑠 (𝑞𝑚𝑟 − 𝑞𝑙) (3)

𝑇𝑚 = 𝐾𝑚𝑖𝑎 (4)

where 𝑟 is the reduction ratio, 𝐾𝑠 is the torsional stiffness of
the harmonic gear, and 𝐾𝑚 is the motor torque coefficient.

(1) gives

𝑖𝑎 = −𝐾𝑏 ̇𝑞𝑚 + 𝑢 (𝑡)
𝑅 (5)

Substituting 𝑖𝑎 into (4), it would be followed that

𝑇𝑚 = −𝐾𝑚𝐾𝑏𝑅 ̇𝑞𝑚 + 𝐾𝑚𝑅 𝑢 (𝑡) (6)

Substituting (3) and (6) into (2), one can obtain harmonic
gear drive systems kinetic model:

𝐽𝑚 ̈𝑞𝑚 = 𝐾𝑚𝑅 𝑢 (𝑡) − 𝐾𝑠 (𝑞𝑚𝑟 − 𝑞𝑙) − 𝐾𝑚𝐾𝑏𝑅 ̇𝑞𝑚 + 𝐹𝑚
𝐽𝑙 ̈𝑞𝑙 = 𝐾𝑠 (𝑞𝑚𝑟 − 𝑞𝑙) − 𝐹𝑙

(7)

Considering the frictions model [16], because the angle
range in accurate control is small, it is acceptable to choose
the average Coulomb’s frictions 𝑓𝑐𝑚 as whole frictions in
harmonic gear drive systems.

𝑓𝑐𝑚 = 𝑠1𝑞2𝑚 + 𝑠2𝑞𝑚 + 𝑠3 (8)

The static frictions 𝑓𝑠𝑚 is about 3.88% larger than 𝑓𝑐𝑚; then
one can obtain

𝑓𝑠𝑚 = 1.0388 × 𝑓𝑐𝑚 (9)

And frictions on wave generator 𝐹𝑚(𝑥) is

𝐹𝑚 (𝑥) =
{{{{{{{{{

−𝜓𝑚, ̇𝑞𝑚 = 0, 𝜓𝑚 ≤ 𝑓𝑠𝑚
−sgn (𝜓𝑚) 𝑓𝑠𝑚, ̇𝑞𝑚 = 0, 𝜓𝑚 > 𝑓𝑠𝑚
−sgn (𝑞𝑚) 𝑓𝑐𝑚,  ̇𝑞𝑚 > 0

(10)

where 𝜓𝑚 = −𝐾𝑠(𝑞𝑚/𝑟 − 𝑞𝑙) + (𝐾𝑚/𝑅)𝑢(𝑡).
In the same way, frictions on the flexspline 𝐹𝑙(𝑥)would be

as follows:

𝐹𝑙 (𝑥) =
{{{{{{{{{

−𝜓𝑙, ̇𝑞𝑙 = 0, 𝜓𝑙 ≤ 𝑓𝑠𝑙
−sgn (𝜓𝑙) 𝑓𝑠𝑙, ̇𝑞𝑙 = 0, 𝜓𝑙 > 𝑓𝑠𝑙
−sgn (𝑞𝑙) 𝑓𝑐𝑙,  ̇𝑞𝑙 > 0

(11)

where 𝜓𝑙 = (1/𝑟)𝐾𝑠(𝑞𝑚/𝑟 − 𝑞𝑙).
The gears will heat because of frictions in gear drive

system. Correspondingly, a gap which is called backlash
[17] is designed as the expansion space for gears (shown in
Figure 3). These gaps will continue to increase due to wears
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and frictions caused by repeated stop, variable speed, the
working environment, and other reasons, finally leading to
motion delay and inaccurate tracking.

A mathematical expression of backlash is introduced in
[18], considering the dead-zonemodel, and defines the elastic
deformation torsion angle Δ𝑒(𝑡) caused by backlash as

Δ𝑒 (𝑡) =
{{{{{{{{{{{{{

−Δ𝜑 − 𝑗, 𝑞𝑚 (𝑡)𝑟 − 𝑞𝑙 (𝑡) − Δ𝜑 > 𝑗
0, 

𝑞𝑚 (𝑡)𝑟 − 𝑞𝑙 (𝑡) − Δ𝜑 < 𝑗
−Δ𝜑 + 𝑗, 𝑞𝑚 (𝑡)𝑟 − 𝑞𝑙 (𝑡) − Δ𝜑 < −𝑗

(12)

where 𝑗 is the width of backlash and Δ𝜑 is the transmission
error caused by nonelastic deformation torsion angle, which
can be approximated by random number model. The Δ𝑒(𝑡)
dead-zone model can be presented by Figure 4.

Because of Δ𝑒(𝑡), a nonlinear torque 𝑇𝑢𝑙(𝑥) = 𝐾𝑠Δ𝑒(𝑡)
is attached to harmonic gear drive systems. In addition, it
is inevitable that system parameters and characteristics will
drift slowly due to factors such as gear wear and environment.
As a result, chooseΔ𝐴𝑥 as the state parameters variations andΔ𝐵 as the control signals variations.

Choose state vectors as [𝑥1 𝑥2 𝑥3 𝑥4]𝑇 =
[𝑞𝑚 ̇𝑞𝑚 𝑞𝑙 ̇𝑞𝑙]𝑇 and harmonic gear drive systems can be
presented as follows:

{{{{{{{{{{{{{{{{{

̇𝑥1 = 𝑥2
�̇�2 = −𝜑21𝑥1 − 𝜑22𝑥2 + 𝜑23𝑥3 − 𝑇𝑢𝑙 (𝑥) + 𝑇𝑚 (𝑥) + 𝜑2𝑢𝑢 (𝑡)

̇𝑥3 = 𝑥4
�̇�4 = 𝜑41𝑥1 − 𝜑43𝑥3 + 𝑇𝑢𝑙 (𝑥) + 𝑇𝑙 (𝑥)

+Δ𝐴𝑥 + Δ𝐵𝑢 (𝑡) (13)

𝜑21 = 𝐾𝑠𝑟𝐽𝑚 ,

𝜑22 = 𝐾𝑚𝐾𝑏𝐽𝑚𝑅 ,

𝜑23 = 𝐾𝑠𝐽𝑚 ,

𝑇𝑚 (𝑥) = 𝐹𝑚 (𝑥)𝐽𝑚
𝜑2𝑢 = 𝐾𝑚𝐽𝑚𝑅,

𝜑41 = 𝐾𝑠𝑟𝐽𝑙 ,

𝜑43 = 𝐾𝑠𝐽𝑙 ,

𝑇𝑙 (𝑥) = 𝐹𝑙 (𝑥)𝐽𝑙

(14)

It is shown in (13) and (14) that the system of har-
monic gear drive system is a class of nonlinear system with
mismatched uncertainties including parameters perturbation
and external disturbance.

3. Quadratic Integral Sliding Mode Design

In this part, a quadratic integral sliding mode surface
is designed to compensate the influence of mismatched

uncertainties and a detailed analysis of system in sliding
mode is given to verify the effectiveness of proposed method.

Consider an arbitrary nonlinear systemwith mismatched
uncertainties as follows:

̇𝑥 = 𝑓 (𝑥, 𝑡) + Δ𝑓 (𝑥, 𝑡) + [𝑔 (𝑥, 𝑡) + Δ𝑔 (𝑥, 𝑡)] 𝑢 (15)

where 𝑥 ∈ 𝑅𝑛 is state vector, 𝑢 ∈ 𝑅 is control signal, and
𝑓(𝑥, 𝑡) = [𝑓1(𝑥, 𝑡) 𝑓2(𝑥, 𝑡) . . . 𝑓4(𝑥, 𝑡)]𝑇 are nonlinear
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Figure 3: Backlash.
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Figure 4: Δ𝑒(𝑡) dead-zone model.

dynamic vectors. 𝑔(𝑥, 𝑡) = [𝑔1(𝑥, 𝑡) 𝑔2(𝑥, 𝑡) . . . 𝑔4(𝑥, 𝑡)]𝑇
are nonlinear control gain vectors, Δ𝑓(𝑥, 𝑡) =
[Δ𝑓1(𝑥, 𝑡) Δ𝑓2(𝑥, 𝑡) . . . Δ𝑓4(𝑥, 𝑡)]𝑇 are parameters pertur-
bations and external disturbances, and Δ𝑔(𝑥, 𝑡) =
[Δ𝑔1(𝑥, 𝑡) Δ𝑔2(𝑥, 𝑡) . . . Δ𝑔4(𝑥, 𝑡)]𝑇 are parameters pertur-
bations of control gain. Here, Δ𝑓(𝑥, 𝑡) + Δ𝑔(𝑥, 𝑡)𝑢 are uncer-
tainties.

Suppose that there exists a control law 𝑢0, which is
designed in a desired way, stabilizing nominal system (16),
with a given accuracy (the nominal system is the system
without uncertainties).

�̇� = 𝑓 (𝑥, 𝑡) + 𝑔 (𝑥, 𝑡) 𝑢0 (16)

Considering the nonlinear system with mismatched
uncertainties (15), the uncertainties are unknown, but it is
acceptable to assume that the uncertainties are bounded.
Consequently, assumptions are introduced as follows.

Assumption 1. ‖Δ𝑓(𝑥, 𝑡)‖ ≤ 𝜉1‖𝑥‖ + 𝜉0 ≤ ‖𝑓(𝑥, 𝑡)‖, with the
scalars 𝜉0 > 0, 𝜉1 > 0; here‖ ⋅ ‖ stands for Euclidean norm.

Assumption 2. ‖Δ𝑔(𝑥, 𝑡)‖ ≤ 𝜁1‖𝑥‖ + 𝜁0 ≤ ‖𝑔(𝑥, 𝑡)‖, with the
scalars 𝜁0 > 0, 𝜁1 > 0; here‖ ⋅ ‖ stands for Euclidean norm.

The quadratic integral sliding mode control law will be
designed as

𝑢 = 𝑢0 + 𝑢1 (17)

where 𝑢0 stands for the abovementioned control law of
nominal system, which is responsible for the performance of
the nominal system and satisfies Assumption 3.

Assumption 3. 𝑢0 ≤ 𝛽0 +𝛽1‖𝑥‖, with the scalars 𝛽0 > 0, 𝛽1 >0.
While 𝑢1 stands for discontinuous control action that

compensates the mismatched uncertainties, based on
quadratic integral sliding mode surface, the definition of 𝑢1
will be introduced in (32).

In order to compensate the effect of mismatched uncer-
tainties, the quadratic integral sliding mode surface is
designed as

𝑠 = 1
2 [𝑥𝑇 (𝑡) 𝑥 (𝑡) − 𝑥 (𝑡0)𝑇 𝑥 (𝑡0)]
− ∫𝑡
𝑡0

{𝑥𝑇 (𝑡) [𝑓 (𝑥, 𝑡) + 𝑔 (𝑥, 𝑡) 𝑢] − 𝑏 (𝑥) 𝑢1} 𝑑𝑡
(18)

Here 𝑥(𝑡0) is the initial values of the state vector and 𝑏(𝑥) ∈ 𝑅
is demonstrated in (19)

𝑏 (𝑥) = 𝜎 + 𝜁0 ‖𝑥‖ + 𝜁1 ‖𝑥‖2 + 𝑥𝑇 (𝑡) 𝑔 (𝑥, 𝑡) (19)

with the arbitrary scalar 𝜎 > 0.
The sliding mode surface (18) is in a quadratic form;

therefore, (18) is a quadratic integral sliding mode surface.
Assuming that the quadratic integral sliding mode surface𝑠 = 0 can be reached, it leads to

1
2 [𝑥𝑇 (𝑡) 𝑥 (𝑡) − 𝑥 (𝑡0)𝑇 𝑥 (𝑡0)]

− ∫𝑡
𝑡0

{𝑥𝑇 (𝑡) [𝑓 (𝑥, 𝑡) + 𝑔 (𝑥, 𝑡) 𝑢] − 𝑏 (𝑥) 𝑢1} 𝑑𝑡
= 0

(20)

and the following can be obtained:

𝑠 = ∫𝑡
𝑡0

{𝑥𝑇 (𝑡) [Δ𝑓 (𝑥, 𝑡) + Δ𝑔 (𝑥, 𝑡) 𝑢] + 𝑏 (𝑥) 𝑢1} 𝑑𝑡
= 0

(21)

If the quadratic integral sliding mode surface (21) is reached
and remains there, then

̇𝑠 = 𝑥𝑇 (𝑡) [Δ𝑓 (𝑥, 𝑡) + Δ𝑔 (𝑥, 𝑡) 𝑢] + 𝑏 (𝑥) 𝑢1 = 0 (22)

One can obtain the equivalent control of 𝑢1:
𝑢1𝑒𝑞 = −𝑥𝑇 (𝑡) [Δ𝑓 (𝑥, 𝑡) + Δ𝑔 (𝑥, 𝑡) 𝑢0]

[𝑥 (𝑡)𝑇Δ𝑔 (𝑥, 𝑡) + 𝑏 (𝑥)] (23)

Substituting 𝑢1𝑒𝑞 into (15), then the system in sliding mode
will be

�̇� = 𝑓 (𝑥, 𝑡) + 𝑔 (𝑥, 𝑡) 𝑢0 + △𝑓(𝑥, 𝑡) 𝐼𝑛Γ
+ △𝑔 (𝑥, 𝑡) 𝑢0𝐼𝑛Γ (24)

where Γ = 1 − 𝑥𝑇(𝑡)[𝑔(𝑥, 𝑡) + △𝑔(𝑥, 𝑡)]/(𝑥𝑇△𝑔(𝑥, 𝑡) + 𝑏(𝑥))
and Γ could be written into

Γ = 1 − [𝑥𝑇 (𝑡) 𝑔 (𝑥, 𝑡) + 𝑥𝑇 (𝑡) △ 𝑔 (𝑥, 𝑡)
𝑥𝑇 (𝑡) △ 𝑔 (𝑥, 𝑡) + 𝑏 (𝑥) ] (25)
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Figure 5: Structure of control system for harmonic gear drive systems.

It is evident that

Γ = 𝑏 (𝑥) − 𝑥𝑇 (𝑡) 𝑔 (𝑥, 𝑡)
𝑏 (𝑥) + 𝑥𝑇 (𝑡) △ 𝑔 (𝑥, 𝑡) (26)

Consider that

− 𝑥𝑇 (𝑡) 𝑔 (𝑥, 𝑡) ≤ −𝑥𝑇 (𝑡) 𝑔 (𝑥, 𝑡) ≤ 𝑥𝑇 (𝑡) 𝑔 (𝑥, 𝑡)
−𝜁1 ‖𝑥‖2 − 𝜁0 ‖𝑥‖ ≤ 𝑥𝑇 (𝑡) △ 𝑔 (𝑥, 𝑡)

≤ 𝜁1 ‖𝑥‖2 + 𝜁0 ‖𝑥‖
(27)

Taking Assumption 2 and (19) into consideration, it
would follow that

𝑏 (𝑥) − 𝑥𝑇 (𝑡) 𝑔 (𝑥, 𝑡) ≤ 𝜎 + 𝜁1 ‖𝑥‖2 + 𝜁0 ‖𝑥‖
𝜎 + 𝑥𝑇 (𝑡) 𝑔 (𝑥, 𝑡) ≤ 𝑥𝑇 (𝑡) △ 𝑔 (𝑥, 𝑡) + 𝑏 (𝑥) (28)

Then

Γ ≤ 𝜎 + 𝜁1 ‖𝑥‖2 + 𝜁0 ‖𝑥‖𝜎 + 𝑥𝑇 (𝑡) 𝑔 (𝑥, 𝑡) ≤ 1 (29)

Besides

0 < 𝜎 ≤ 𝑏 (𝑥) − 𝑥𝑇 (𝑡) 𝑔 (𝑥, 𝑡)
0 < 𝜎 ≤ 𝑏 (𝑥) − 𝑥𝑇 (𝑡) △ 𝑔 (𝑥, 𝑡) (30)

One can obtain the conclusion

0 < Γ ≤ 1 (31)

It is obvious that the effect of uncertainties is compen-
sated. Equation (31) indicates that if the quadratic integral
sliding mode surface is reached and remains there, the effect
of uncertainties Δ𝑓(𝑥, 𝑡) + Δ𝑔(𝑥, 𝑡)𝑢0 can be compensated,
achieving robustness to mismatched uncertainties. Besides,
the system will be on sliding mode surface from any initial
state; consequently, the system is robust to mismatched
uncertainties from any initial state.

4. Quadratic Integral Sliding Mode
Controller Design

The design of the abovementioned quadratic integral sliding
mode controller will be illustrated in this part. The structure
of the quadratic integral sliding mode controller is shown in
Figure 5.

As was mentioned earlier, the quadratic integral sliding
mode control law will be designed as 𝑢 = 𝑢0 + 𝑢1. Then𝑢1 is the discontinuous control action that compensates the
mismatched uncertainties, with definition as

𝑢1
= −𝑏−1 (𝑥) [(𝜆0 + 𝜆1 ‖𝑥‖) 𝑠 + (𝜂0 + 𝜂1 ‖𝑥‖) sgn (𝑠)] (32)

where 𝜆0, 𝜆1, 𝜂0, and 𝜂1 ∈ 𝑅 are scalars defined as follows:

𝜆0 ≥ 𝜀1 (𝜁1 ‖𝑥‖2 + 𝜁0 ‖𝑥‖ + 𝜎)
𝜎 (33)

𝜆1 ≥ 0 (34)

𝜂0 ≥ 𝜀2 (𝜁1 ‖𝑥‖2 + 𝜁0 ‖𝑥‖ + 𝜎)
𝜎 (35)

𝜂1 ≥ (𝜎𝛿)−1
⋅ [𝜉0 + 𝜁0𝛽0 + (𝜉1 + 𝜁0𝛽1 + 𝜁1𝛽0) ‖𝑥‖ + 𝜁1𝛽1 ‖𝑥‖2] (36)

The two approaching parameters 𝜀1 and 𝜀2 in (33) and (35) are
arbitrary positive scalars, and 𝛿 = (𝜎 + 𝜁0‖𝑥‖ + 𝜁1‖𝑥‖2)−1.

The sliding mode control will inevitably cause chat-
tering due to switching time lag, spatial lag, and inertia
effect. Chattering will affect the control precision and reduce
systems control quality, in more serious cases, and even
destroy control elements. In most investigations, the sign
function is replaced with the saturation function to reduce
the chattering. To some degree, this method can weaken the
chattering, but the saturation function is a discontinuous
function, making the result conservative. In this paper, the
sign function is replaced by the hyperbolic tangent function,
which is continuous and smooth.

Hyperbolic tangent function is shown as follows:

tanh (𝑠
𝜀) = e𝑠/𝜀 − e−𝑠/𝜀

e𝑠/𝜀 + e−𝑠/𝜀
(37)

where 𝑠 stands for the quadratic integral sliding mode and𝜀 > 0 is a positive scalar, which decides the change rate of
hyperbolic tangent inflection point.

5. Harmonic Gear Drive Systems Stability

The reachability of the sliding mode surface and the stability
of closed-loop system under quadratic sliding mode control
will be proved in this part.
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Reachability of the Sliding Mode. Derivation of the quadratic
integral sliding mode surface (18) along time and substituting
(15) into (18), differential of (18) would be

̇𝑠 = 𝑥𝑇 (𝑡) [Δ𝑓 (𝑥, 𝑡) + Δ𝑔 (𝑥, 𝑡) 𝑢] + 𝑏 (𝑥) 𝑢1 (38)

By using the quadratic slidingmode control law (33)-(36), the
following equations can be obtained:

𝑠 ̇𝑠 = 𝑥𝑇 (𝑡) Δ𝑓 (𝑥, 𝑡) 𝑠 + 𝑠𝑥𝑇 (𝑡) Δ𝑔 (𝑥, 𝑡) 𝑢 + 𝑠𝑏 (𝑥)
⋅ {−𝑏−1 (𝑥) [(𝜆0 + 𝜆1 ‖𝑥‖) 𝑠 + (𝜂0 + 𝜂1 ‖𝑥‖) sgn (𝑠)]}
= 𝑥𝑇 (𝑡) Δ𝑓 (𝑥, 𝑡) 𝑠 + 𝑠𝑥𝑇 (𝑡) Δ𝑔 (𝑥, 𝑡) 𝑢 − (𝜆0
+ 𝜆1 ‖𝑥‖) 𝑠2 − (𝜂0 + 𝜂1 ‖𝑥‖) |𝑠|

(39)

where

𝑠𝑥𝑇 (𝑡) Δ𝑔 (𝑥, 𝑡) 𝑢 = 𝑠𝑥𝑇 (𝑡) Δ𝑔 (𝑥, 𝑡) {𝑢0
− 𝑏−1 (𝑥) [(𝜆0 + 𝜆1 ‖𝑥‖) 𝑠 + (𝜂0 + 𝜂1 ‖𝑥‖) sgn (𝑠)]}
= 𝑠𝑥𝑇 (𝑡) Δ𝑔 (𝑥, 𝑡) 𝑢0 − 𝑥𝑇 (𝑡) Δ𝑔 (𝑥, 𝑡) 𝑏−1 (𝑥)
⋅ ((𝜆0 + 𝜆1 ‖𝑥‖) 𝑠2 + (𝜂0 + 𝜂1 ‖𝑥‖) |𝑠|)

(40)

and then

𝑠 ̇𝑠 = 𝑥𝑇 (𝑡) Δ𝑓 (𝑥, 𝑡) 𝑠 + 𝑠𝑥𝑇 (𝑡) Δ𝑔 (𝑥, 𝑡) 𝑢0 − 𝑥𝑇 (𝑡)
⋅ Δ𝑔 (𝑥, 𝑡) 𝑏−1 (𝑥)
⋅ ((𝜆0 + 𝜆1 ‖𝑥‖) 𝑠2 + (𝜂0 + 𝜂1 ‖𝑥‖) |𝑠|)
− ((𝜆0 + 𝜆1 ‖𝑥‖) 𝑠2 + (𝜂0 + 𝜂1 ‖𝑥‖) |𝑠|) = 𝑥𝑇 (𝑡)
⋅ Δ𝑓 (𝑥, 𝑡) 𝑠 + 𝑠𝑥𝑇 (𝑡) Δ𝑔 (𝑥, 𝑡) 𝑢0
− (1 + 𝑥𝑇 (𝑡) Δ𝑔 (𝑥, 𝑡) 𝑏−1 (𝑥))
⋅ [(𝜆0 + 𝜆1 ‖𝑥‖) 𝑠2 + (𝜂0 + 𝜂1 ‖𝑥‖) |𝑠|]

(41)

Because of Assumption 1, Assumption 2, and Assump-
tion 3, the inequation above will be

𝑠 ̇𝑠 ≤ [(𝜉1 ‖𝑥‖ + 𝜉0) + (𝜁1 ‖𝑥‖ + 𝜁0) (𝛽0 + 𝛽1 ‖𝑥‖)] ‖𝑥‖
⋅ |𝑠| + [𝑥𝑇 (𝑡) Δ𝑔 (𝑥, 𝑡) 𝑏−1 (𝑥)]
⋅ [(𝜆0 + 𝜆1 ‖𝑥‖) 𝑠2 + (𝜂0 + 𝜂1 ‖𝑥‖) |𝑠|]
− [(𝜆0 + 𝜆1 ‖𝑥‖) 𝑠2 + (𝜂0 + 𝜂1 ‖𝑥‖) |𝑠|]
≤ [(𝜉1 ‖𝑥‖ + 𝜉0) + (𝜁1 ‖𝑥‖ + 𝜁0) (𝛽0 + 𝛽1 ‖𝑥‖)] ‖𝑥‖
⋅ |𝑠| + [‖𝑥‖ (𝜁1 ‖𝑥‖ + 𝜁0) 𝑏−1 (𝑥) − 1]
⋅ [(𝜆0 + 𝜆1 ‖𝑥‖) 𝑠2 + (𝜂0 + 𝜂1 ‖𝑥‖) |𝑠|]

(42)

Considering (19), it would lead to

𝑠 ̇𝑠 ≤ {𝜉0 + 𝜁0𝛽0 + (𝜉1 + 𝜁0𝛽1 + 𝜁1𝛽0) ‖𝑥‖ + 𝜁1𝛽1 ‖𝑥‖2}
⋅ ‖𝑥‖ ⋅ |𝑠| − 𝜎 + 𝑥𝑇 (𝑡) 𝑔 (𝑥)𝑏 (𝑥) (𝜆0 + 𝜆1 ‖𝑥‖) 𝑠2

− 𝜎 + 𝑥𝑇 (𝑡) 𝑔 (𝑥)𝑏 (𝑥) (𝜂0 + 𝜂1 ‖𝑥‖) |𝑠|
(43)

Considering (33) to (36), then 𝑠 ̇𝑠 ≤ −𝜀1𝑠2 − 𝜀2|𝑠|.
In consequence, the quadratic integral sliding mode

surface (18) can be reached in finite time and remains there.
This completes the proof. r

Stability of the Closed-Loop System in SlidingMode. Select the
Lyapunov function as

𝑉 (𝑥) = 1
2𝑥𝑇 (𝑡) 𝑥 (𝑡) (44)

�̇� (𝑥) = 𝑥𝑇 (𝑡) �̇� (𝑡) = 𝑥𝑇 (𝑡)
⋅ [𝑓 (𝑥, 𝑡) + Δ𝑓 (𝑥, 𝑡) + 𝑔 (𝑥, 𝑡) 𝑢 + Δ𝑔 (𝑥, 𝑡) 𝑢] (45)

The quadratic integral sliding mode surface (18) has been
proved to be reachable. If the system reaches the surface and
remains there, then

𝑥𝑇 (𝑡) [Δ𝑓 (𝑥, 𝑡) + Δ𝑔 (𝑥, 𝑡) 𝑢] + 𝑏 (𝑥) 𝑢1 = 0 (46)

Substituting (46) into (45), one can obtain

�̇� (𝑥) = 𝑥𝑇 (𝑡) [𝑓 (𝑥, 𝑡) + 𝑔 (𝑥, 𝑡) 𝑢0 + 𝑏 (𝑥) 𝑢1] (47)

When (18) is reached, then 𝑢1 = 0 and (47) will be

�̇� (𝑥) = 𝑥𝑇 (𝑡) [𝑓 (𝑥, 𝑡) + 𝑔 (𝑥, 𝑡) 𝑢0] (48)

It can be seen that if the nominal system (16) can be sta-
bilized by 𝑢0, then �̇�(𝑥) < 0. In other words, if 𝑢0 is designed
to stabilized the nominal system (16), then the closed-loop
nonlinear system with mismatched system is asymptotically
stable under the quadratic integral sliding mode control law𝑢.

This completes the proof. r
In conclusion, it is proved that the quadratic sliding mode

surface (18) is reachable and the closed-loop nonlinear system
with mismatched uncertainties in sliding mode is asymp-
totically stable with robustness to mismatched uncertainties.
The system’s dynamic performance is depended on 𝑢0, and
various control theories (such as LQR, H-infinity control)
could be applied in 𝑢0 designing according to different re-
quirements.
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Table 1: Simulation parameters.

Parameter Unit Value
𝑅 Ω 5.6
𝐾𝑚 𝑁 ⋅ 𝑚 ⋅ 𝐴−1 0.517
𝐾𝑒 𝑉 ⋅ 𝑠 ⋅ 𝑟𝑎𝑑−1 0.517
𝐽𝑚 𝐾𝑔 ⋅ 𝑚2 6.82 × 10−4
𝐽𝑙 𝐾𝑔 ⋅ 𝑚2 2.35 × 10−2
𝑟 80
𝐾𝑠 𝑁𝑚 ⋅ 𝑟𝑎𝑑−1 5.4 × 105 (𝑇𝑠 < 235𝑁𝑚)

8.8 × 105(235𝑁𝑚 ≤ 𝑇𝑠 < 843𝑁𝑚)
9.8 × 105(𝑇𝑠 ≥ 843𝑁𝑚)

6. Simulation Studies

What deserved our attention is that the quadratic integral
sliding mode control could be applied to the uncertain
systems with linear time-invariant nominal plants, where

𝑓(𝑥, 𝑡) = 𝐴𝑥, 𝑔(𝑥, 𝑡) = 𝐵,𝐴 is the system matrix, and 𝐵 is the
input matrix.

The harmonic gear drive system parameters [6], which
are shown in Table 1, are used in following simulations.
Substituting parameters into harmonic gear drive systems
model (13), then the system will be

{{{{{{{{{{{{{{{

̇𝑥1 = 𝑥2
̇𝑥2 = −9.897 × 106𝑥1 − 69.9855𝑥2 + 7.918 × 108𝑥3 + 148.188𝑢 (𝑡)
̇𝑥3 = 𝑥4
̇𝑥4 = 2.8723 × 105𝑥1 − 2.297 × 107𝑥3

+ Δ𝐴𝑥 + Δ𝐵𝑢 (𝑡) + 𝑇𝑢 (𝑥) (49)

Δ𝐴𝑥 =
[[[[[
[

0.1𝑥2
−9.897 × 105𝑥1 − 6.99855𝑥2 + 7.918 × 107𝑥3

0.1𝑥4
2.8723 × 104𝑥1 − 2.297 × 106𝑥3

]]]]]
]

,

𝑇𝑢 (𝑥) =
[[[[[
[

0
𝑇𝑚 (𝑥) − 𝑇𝑢𝑙 (𝑥)

0
𝑇𝑙 (𝑥) + 𝑇𝑢𝑙 (𝑥)

]]]]]
]

,

Δ𝐵 =
[[[[[
[

0
7.4094

0
0

]]]]]
]

,

(50)

𝑇𝑚 (𝑥) = 1
6.82 × 10−4

{{{{{{{{{

−𝜓𝑚, �̇�1 = 0, 𝜓𝑚 ≤ 𝑓𝑠𝑚
−sgn (𝜓𝑚) 𝑓𝑠𝑚, �̇�1 = 0, 𝜓𝑚 > 𝑓𝑠𝑚
−sgn (𝑞𝑚) 𝑓𝑐𝑚, �̇�1 > 0,

𝜓𝑚 = −5.4 × 105 (𝑥180 − 𝑥3) + 0.092𝑢 (𝑡) ,
𝑓𝑐𝑚 = 1.5738 × 10−6𝑥12 − 3.7901 × 10−4𝑥1 + 0.0720,

𝑓𝑠𝑚 = 1.0388 × 𝑓𝑐𝑚.

(51)
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Table 2: Simulation data without uncertainties.

Steady-state Maximum overshoot Stable time Control values Error values Maximum Control values
error (𝑟𝑎𝑑) (𝑟𝑎𝑑) (𝑠) ∑ 𝑢𝑖2 (𝑉2) ∑ 𝑒𝑖2 (𝑟𝑎𝑑2) max 𝑢𝑖 (𝑉)

QISMC 0.0042 0.0472 0.0572 1.6307 × 1012 0.1555 2.6428 × 105
ISMC 0.0024 0.0809 0.0741 2.2879 × 1012 0.2256 4.7746 × 105
SMC 0.0070 0.0537 0.0827 1.6250 × 1012 0.1978 2.6783 × 105

Table 3: Simulation data with uncertainties.

Steady-state error Maximum overshoot Stable time Control values Error values Maximum Control values
(𝑟𝑎𝑑) (𝑟𝑎𝑑) (𝑠) ∑ 𝑢𝑖2(𝑉2) ∑ 𝑒𝑖2 (𝑟𝑎𝑑2) max 𝑢𝑖 (𝑉)

QISMC 0.0046 0.0538 0.0608 1.6206 × 1012 0.1609 2.6428 × 105
ISMC 0.0033 0.0972 0.0846 2.2279 × 1012 0.2408 4.7746 × 105
SMC 0.0087 0.0634 0.0901 1.6183 × 1012 0.2192 2.6783 × 105

𝑇𝑙 (𝑥) = 1
2.35 × 10−2

{{{{{{{{{

−𝜓𝑙, �̇�3 = 0, 𝜓𝑙 ≤ 𝑓𝑠𝑙
−sgn (𝜓𝑙) 𝑓𝑠𝑙, �̇�3 = 0 𝜓𝑙 > 𝑓𝑠𝑙
−sgn (𝑞𝑙) 𝑓𝑐𝑙, �̇�3 > 0,

𝜓𝑙 = 6.75 × 103 (𝑥180 − 𝑥3) ,
𝑓𝑐𝑙 = 1.5738 × 10−6𝑥32 − 3.7901 × 10−4𝑥3 + 0.0720,

𝑓𝑠𝑙 = 1.0388 × 𝑓𝑐𝑙.

(52)

𝑇𝑢𝑙 (𝑥) = 5.4 × 105Δ𝑒 (𝑡) ,

Δ𝑒 (𝑡) =
{{{{{{{{{{{

−Δ𝜑 − 𝑗, 𝑥180 − 𝑥3 − Δ𝜑 > 𝑗
0, 

𝑥180 − 𝑥3 − Δ𝜑 < 𝑗
−Δ𝜑 + 𝑗, 𝑥180 − 𝑥3 − Δ𝜑 < −𝑗,

𝑗 = 0.5𝑚𝑚.

(53)

Choosing the initial state vector’s condition as 𝑥0 =[0 0 0.05 0], 𝜎 = 1, 𝜁0 = 0, 𝜁1 = 0, 𝜆0 = 60, 𝜆0 =0, 𝜂0 = 0, and 𝜂0 = 4 + ‖𝑥‖, suppose that the system is
not affected by nonlinear mismatched uncertainties. Define
the angular transmission errors as 𝑒 = 𝑞𝑚/𝑟 − 𝑞𝑙. 𝑢0 =(𝐶𝐵)−1(−𝐶𝐴𝑥 + �̇�), 𝜇 is an auxiliary variable, and 𝜇 = 𝐶𝑥 =[221.07 0.0833 −1.515 1] 𝑥, �̇� = −5𝜇.

Simulation results in comparison with SMC and ISMC,
shown in Table 2 and Figures 6–12.

As the simulation results indicated, when choosing SMC,
the system has acceptable overshoot but has a larger steady
state error and much longer stable time. When choosing
ISMC, the system rises rapidly with a fewer steady state error
but has larger control values andmaximum overshoot, which
will inevitably cause impact to the system.

When choosing QISMC, the system will steady rapidly
with an acceptable steady state error. In comparison with
SMC, control values rise a little and the relative increment is0.2%∼4%. The system has minimum overshoot, minimum

stable time, and minimum error values, which satisfy the
requirements of high precision, fast response, and smooth
operation.

Considering that the system is affected by nonlinear
mismatched uncertainties, simulation results are presented in
Tables 3 and 4 and Figures 13–19.

The simulation results without uncertainties (in Table 2)
are compared with simulation results with uncertainties (in
Table 3), and then system deterioration caused by uncertain-
ties is demonstrated in Table 4, which will indicate system
robustness against mismatched uncertainties.

As shown in results, when system is affected by uncertain-
ties, ISMC has the most serious deterioration and simulation
curves cannot keep smooth. Despite the fact that SMC can
still stabilize the system, the control system quality will not
be accepted after deterioration. In comparison with SMC
and ISMC, QISMC can stabilized the system with a series
advantages such as fast response, fewer rise time, fewer
overshoot, and fewer small error. The relative control value
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Table 4: System deterioration.

Steady-state error Maximum overshoot Stable time Error values
QISMC 9.52% 13.98% 6.29% 3.78%
ISMC 37.50% 20.14% 11.42% 6.8%
SMC 12.42% 13.66% 8.94% 10.8%

QISMC
ISMC
SMC

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12
e (

ra
d)

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.20
Time (s)

Figure 6: Angular transmission error 𝑒 without uncertainties.
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Figure 7: State vector 𝑥1 without uncertainties.
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Figure 8: State vector 𝑥2 without uncertainties.
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Figure 9: State vector 𝑥3 without uncertainties.
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Figure 10: State vector 𝑥4 without uncertainties.
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Figure 11: Control signal 𝑢 without uncertainties.
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Figure 12: Comparison of control signal 𝑢 without uncertainties.
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Figure 13: Angular transmission error 𝑒 with uncertainties.
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Figure 14: State vector 𝑥1 with uncertainties.
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Figure 15: State vector 𝑥2 with uncertainties.
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Figure 16: State vector 𝑥3 with uncertainties.
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Figure 17: State vector 𝑥4 with uncertainties.
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Figure 18: Control signal 𝑢 with uncertainties.
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Figure 19: Comparison of control signal 𝑢 with uncertainties.

increment lies in 0.2% ∼ 5.3%. Simulation results illustrate
that QISMC has strong robustness to nonlinear mismatched
uncertainties and disturbance.

7. Conclusions

In order to compensate harmonic gear transmission errors
by control method, this paper studies quadratic integral
sliding mode control for a class of nonlinear harmonic gear

drive systems with mismatched uncertainties, where a new
quadratic integral sliding mode controller design method
based on quadratic integral sliding mode surface is presented.
Considering the nonlinear torques which are caused by
backlash and frictions, the models of nonlinear frictions
and torques are presented and the influence of nonlinear
parts is compensated during control system design. In system
modeling, frictions and nonlinear elastic deformations are
taken into consideration and then themathematical model of
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harmonic gear drive system is established. By using Lyapunov
stability theory, it is proven that the quadratic integral sliding
mode can be reached in finite time and closed-loop systems
are asymptotic stable robustly. Simulation studies are carried
out and the results verify the effectiveness of the proposed
method. Compared with the traditional linear sliding mode
control (SMC) and the integral sliding mode control (ISMC),
the quadratic integral sliding mode control stabilizes the
system rapidly with shorter rise time, lower overshoot,
smaller errors, and strong robustness against mismatched
uncertainties and nonlinear disturbances.The results indicate
that QISMC has a good performance with strong robustness
on a class of nonlinear system with mismatched uncertain-
ties.

Nomenclature

Notation

𝑖𝑎: Motor armature current𝑢(𝑡): Motor armature voltage𝑅: Equivalent resistance𝐾𝑏: Back-EMF coefficient𝜔𝑚: Angel speed of motor rotor𝐿: Motor armature inductance𝑞𝑚: Angular displacement of the wave
generator𝑞𝑙: Angular displacement of the flexspline𝑇𝑚: Input torques on the wave generator𝑇𝑠: Input torque on the flexspline𝐹𝑚: Input equivalent frictions on the wave
generator𝐹𝑙: Input equivalent frictions on the flexspline𝐽𝑚: Moment of inertia of the wave generator𝐽𝑙: Moment of inertia of the flexspline𝑟: Reduction ratio𝐾𝑠: Torsional stiffness of the harmonic gear𝐾𝑚: Motor torque coefficient𝑓𝑐𝑚: Average Coulomb’s frictions𝑓𝑠𝑚: The static frictions𝐹𝑚(𝑥): Frictions on wave generator𝐹𝑙(𝑥): Frictions on the flexspline𝑗: Width of backlashΔ𝜑: Transmission error caused by nonelastic
deformation torsion angleΔ𝑒(𝑡): The elastic deformation torsion angle
caused by backlash𝑇𝑢𝑙(𝑥): Torques caused by Δ(𝑡)Δ𝐴𝑥: State parameters variationsΔ𝐵: Control signals variations.

Abbreviations

QISMC: Quadratic integral sliding mode control
ISMC: Integral sliding mode control
SMC: Sliding mode control.
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